PERC太阳电池发射极表面优化设计与模拟Design and simulation of PERC solar cell emitter surface optimization
刘文峰,周子游,黄海龙,赵增超
摘要(Abstract):
通过模型计算,分析了发射极表面对PERC太阳电池转换效率的影响;然后设计了不同条件下的扩散和热氧化工艺实验,得到了最高转换效率达22.30%的PERC太阳电池;并对实验结果进行拟合,优化后的扩散和热氧化工艺降低了发射极表面复合速率,提高了电池的转换效率。
关键词(KeyWords): PERC;太阳电池;表面复合速率;转换效率;优化设计;发射极
基金项目(Foundation): 湖南省创新创业技术投资项目:高效太阳能电池关键装备国产化及其集成应用(2017GK5002)
作者(Author): 刘文峰,周子游,黄海龙,赵增超
参考文献(References):
- [1] Green M A. The path to 25%silicon solar cell efficiency:history of silicon cell evolution[J]. Progress in Photovoltaics:Research and Applications, 2009, 17(3):183-189.
- [2] Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J]. Nature Energy, 2017,2(5):17032.
- [3] Blakers A W, Wang A, Milne A M, et al. 22.8% efficient silicon solar cell[J]. Applied Physics Letters, 1989, 55(13):1363-1365.
- [4] Huang H, Lv J, Bao Y, et al. 20.8% industrial PERC solar cell:ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%[J]. Solar Energy Materials and Solar Cells, 2017, 161:14-30.
- [5] Richter A, Benick J, Hermle M. Boron Emitter Passivation With Al2O3 and Al2O3/SiNx Stacks Using ALD Al2O3[J]. IEEE Journal of Photovoltaics, 2013, 3(1):236-245.
- [6] Huang H, Lv J, Bao Y, et al. 20.8% industrial PERC solar cell:ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%[J]. Solar Energy Materials and Solar Cells, 2017, 161:14-30.
- [7] Li H, Kim K, Hallam B, et al. POCl3 diffusion for industrial Si solar cell emitter formation[J]. Frontiers in Energy, 2017, 11(1):42-51.
- [8] Suh D. Efficient implementation of multiple drive-in steps in thermal diffusion of phosphorus for PERC solar cells[J]. Current Applied Physics, 2018, 18,(2):178-182.
- [9] Tahir S, Ali A, Amin N, et al. The Effect of Nonuniform Emitter Sheet Resistance on PERC Solar Cell Performance[J].Silicon, 2018,(1):1-7.
- [10]李宁,谷书辉,任丙彦. PERC电池背表面钝化的PC1D仿真分析[J].太阳能学报, 2018, 39(8):2273-2278.
- [11]白焱辉. PERC太阳电池的工艺研究与器件模拟[D].广州:中山大学, 2015.
- [12] Basore P A, Cabanas-Holmen K. PC2D:A circular-reference spreadsheet solar cell device simulator[A].37th Photovoltaic Specialists Conference[C]. Seattle, Washington, USA, 2011.
- [13] Glunz S W, Feldmann F. SiO2 surface passivation layers–a key technology for silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 185:260-269.
- [14] Lin D, Abbott M, Lu D, et al. Process optimization of localized BSF formation for solar cells with over 20%energy conversion efficiency[A]. 40th Photovoltaic Specialist Conference[C]. Denver, USA, 2014.
- [15] Bonilla R S, Hoex B, Hamer P, et al. Dielectric surface passivation for silicon solar cells:A review[J]. Applications and Materials, 2017, 214(7):1700293.
- [16] Lee J Y. Rapid Thermal Processing of Silicon Solar Cells:Passivation and Diffusion[EB/OL]. https://www.researchgate.net/publication/29756362_Rapid_thermal_processing_of_silicon_solar_cells-passivation_and_diffusion, 2003.
- [17] Muhlbauer M, Piechulla A, Voyer C, et al. Industrial lowpressure phosphorus diffusion for high performance and excellent uniformity[A]. 26th European International Conference on Photovoltaic Solar Energy[C]. Hamburg, Germany, 2011.