基于机器视觉技术的光伏组件电致发光自动识别分析测试系统的研制
龚道仁,袁志钟,赵文,东野长旭,陈勇,姚宏燚,尤奇燊,喻书豪,朱佳
摘要(Abstract):
在机器视觉技术的基础上研制了具有自动识别、分析功能的光伏组件电致发光测试系统。首先,开发晶硅太阳电池(单、多晶硅)的电致发光缺陷知识库;然后,搭建设备,并编写软件对光伏组件的电致发光图像进行校正、定位,并标示出缺陷区域;在导入的知识库帮助下,最终实现了软件对光伏组件中缺陷的自动识别功能。此系统具有自动化程度高、准确度高、可定量分析等特点,避免了传统人工分析组件电致发光图像的众多缺点,具有明显的技术和市场优势。
关键词(KeyWords): 机器视觉;光伏组件;电致发光;图像分析;知识库
基金项目(Foundation): 江苏检验检疫局科技计划项目:晶体硅光伏组件电致发光(EL)评价方法研究及基于机器视觉自动识别分析的电致发光(EL)测试系统的研制(2013KJ19);; 江苏大学第13批大学生科研立项(Y13A175)
作者(Author): 龚道仁,袁志钟,赵文,东野长旭,陈勇,姚宏燚,尤奇燊,喻书豪,朱佳
参考文献(References):
- [1]Hering G.Year of the tiger[J].Photon International,2011,3:186-218.
- [2]Thomas D B.A certification program for photovoltaic modules[J].Solar Cells,1982,7:183-185.
- [3]Osterwald C R,Hammond R,Zerlaut G,et al.Photovoltaic module certification and laboratory accreditation criteria development[J].Solar Energy Materials and Solar Cells,1996,41-42:629-636.
- [4]Osterwald C R.Chapter III-2-Standards,Calibration,and Testing of PV Modules and Solar Cells[M].Practical Handbook of Photovoltaics-Fundamentals and Applications(2nd Edition),2012,1045-1069.
- [5]Fertig F,Broisch J,Biro D,et al.Staility of the regeneration of the boron-oxygen complex in silicon solar cells during module certification[J].Solar Energy Materials and Solar Cells,2014,121:157-162.
- [6]TüV德国莱茵公司,大中华区主页[EB/OL].http://www.tuv.com/cn/greater_china/home.jsp,2015-04-02.
- [7]TüV南德意志集团,大中华区主页[EB/OL].http://www.tuv-sud.cn/.,2014-12-17.
- [8]UL测试集团,英文版主页[EB/OL].http://ul.com/,2015-02-19.
- [9]Weber E R.Transition Metals in Silicon[J].Applied Physics,A,1983,30:1-20.
- [10]Moller H J,Long L,Werner M,et al.Oxygen and Carbon precipitation in multicrystalline solar silicon[J].Physica Status Solidi,1999,171:175-189.
- [11]Soiland A K,Ovrelid E J,Engh T A,et al.Si C and Si3N4inclusions in multicrystalline silicon ingots[J].Materials Science in Semiconductor Processing,2004,7:39-43.
- [12]Buonassisi T,Istratov A A,Marcus M A,et al.Engineering metal-impurity nanodefects for low-cost solar cells[J].Nature Materials,2005,4:676-679.
- [13]Macdonald D,Cuevas A.Transition-metal profiles in a multicrystalline silicon ingot[J].Journal of Applied Physics,2005,97:033523-1-033523-7.
- [14]Yu X G,Chen J H,Ma X Y,et al.Impurity engineering of Czochralski silicon[J].Materials Science and Engineering:R,2013,74:1-33.
- [15]Skarvada P,Tomanek P,Koktavy P,et al.A variety of microstructural defects in crystalline silicon solar cells[J].Applied Surface Science,2014,312:50-56.
- [16]Murphy J D,Mc Guire R E,Bothe K,et al.Minority carrier lifetime in silicon photovoltaics:The effect of oxygen precipitation[J].Solar Energy Materials and Solar Cells,2014,120:402-411.
- [17]Chaturvedi P,Hoex B,Walsh T M.Broken metal fingers in silicon wafer solar cells and PV modules[J].Solar Energy Materials and Solar Cells,2013,108:78-81.
- [18]Hassan A H.Defects in geometric design of capsulation of commercial poly-Si solar cell module[J].Renewable Energy,2000,19:617-623.
- [19]Hinken D,Ramspeck K,Rothe K,et al.Series resistance imaging of solar cells by voltage dependent electroluminescence[J].Applied Physics Letters,2007,91:182104-1-3.
- [20]Fuyuki T,Kitiyanan A.Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence[J].Applied Physics A,2009,96:189-196.
- [21]Fuyuki T,Kondo H,Yamazaki T,et al.Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence[J].Applied Physics Letters,2005,86:262108-1-262108-3.
- [22]Bruggemann R,Olibet S.Analysis of electroluminescence from silicon Heterojunction solar cells[J].Energy Procedia,2010,2:19-26.
- [23]Tsai D M,Wu S C,Li W C.Defect detection of solar cells in electroluminescence images using Fourier image reconstruction[J].Solar Energy Materials and Solar Cells,2012,99:250-262.