2017年我国光伏技术发展报告(6)Report on 2017 China PV technology development(part 6)
摘要(Abstract):
<正>北京大学朱瑞课题组使用溶液法制备Cs_2CO_3作为电子传输层代替TiO_2,电池效率超过15%[117];通过优化两步法制备多孔的PbI2膜层,从而促进PbI_2和MAI的反应,提高钙钛矿层的质量,基于该方法得到的电池效率为15.7%[118];在p-i-n结构中,通过采用醋酸铅作为钙钛矿太阳电池的铅源,同时适量添加MABr
关键词(KeyWords):
基金项目(Foundation):
作者(Author):
参考文献(References):
- [117]Hu Q,Wu J,Jiang C,et al.Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%[J].ACS Nano,2014,8(10):10161-10167.
- [118]Liu T H,Hu Q,Wu J,et al.Mesoporous PbI2 scaffold for high performance planar heterojunction perovskite solar cells[J].Advanced Energy Materials,2016,6(3):1501890.
- [119]Zhao L,Luo D Y,Wu J,et al.High-performance inverted planar heterojunction perovskite solar cells based on lead acetate precursor with efficiency exceeding 18%[J].Advanced Functional Materials,2016,26(20):3508-3514.
- [120]Chen K,Hu Q,Liu T H,et al.Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells[J].Advanced Materials,2016,28(48):10718-10724.
- [121]Liu T,Chen K,Hu Q,et al.Inverted perovskite solar cells:progresses and perspectives[J].Advanced Energy Materials,2016,6(17):1600457.
- [122]Zhang H,Wang H,Chen W,et al.CuGaO2:A promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells[J].Advanced Materials,2017,29(8):1604984.
- [123]Fang G J,et al.Enhanced stability of perovskite solar cells with low-temperature hydrothermally grown SnO2 electron transport layers[J].Advanced Functional Materials,2016,26:6069-6075.
- [124]Yang G,Wang Y L,Xu J J,et al.A facile molecularly engineered copper(II)phthalocyanine as hole transport material for planar perovskite solar cells with enhanced performance and stability[J].Nano Energy,2017,31:322-330.
- [125]Ke W J,Xiao C X,Wang C L,et al.Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells[J].Advanced Materials,2016,28(26):5214-5221.
- [126]Yu Z H,Chen B L,Liu P,et al.Stable organic-inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering[J].Advanced Functional Materials,2016,26(27):4866-4873.
- [127]Yu Z H,Qi F,Liu P,et al.A composite nanostructured electron-transport layer for stable hole-conductor free perovskite solar cells:Design and Characterization[J].Nanoscale,2016,8(11):5847-5851.
- [128]Cheng N,Liu P,Bai S H,et al.Enhanced performance in hole transport material free perovskite solar cells via morphology control of PbI2 film by solvent treatment[J].Journal of Power Sources,2016,319:111-115.
- [129]Cheng N,Liu P,Bai S H,et al.Application of mesoporous Si O2 layer as an insulating layer in high performance hole transport material free CH3NH3PbI3 perovskite solar cells[J].Journal of Power Sources,2016,321:71-75.
- [130]Cheng N,Liu P,Qi F,et al.Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells[J].Journal of Power Sources,2016,332:24-29.
- [131]Liu P,Yu Z H,Cheng N,et al.Low-cost and efficient hole-transport-material-free perovskite solar cells employing controllable electron-transport layer based on P25 nanoparticles[J].Electrochimica Acta,2016,213:83-88.
- [132]Luo Q,Ma H,Zhang Y,et al.Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells[J].Journal of Materials Chemistry A,2016,4(15):5569-5577.
- [133]Dai X Z,Zhang Y,Shen H P,et al.Working from both sides:composite metallic semitransparent top electrode for high performance perovskite solar cells[J].ACS Applied Materials&Interfaces,2016,8(7):4523-4531.
- [134]Zhou W R,Zhen J M,Liu Q,et al.Successive surface engineering of TiO2 compact layer via dual modification of fullerene derivatives affording hysteresis-suppressed highperformance perovskite solar cells[J].Journal of Materials Chemistry A,2017,5(4):1724-1733.
- [135]Wu Q L,Zhou W R,Liu Q,et al.Solution-processable ionic liquid as an independent or modifying electron transport layer for high-efficiency perovskite solar cells[J].ACS Applied Materials&Interfaces,2016,8(50):34464-34473.
- [136]Wu Q L,Zhou P C,Zhou W R,et al.Acetate salts as nonhalogen additives to improve perovskite film morphology for highefficiency solar cells[J].ACS Applied Materials&Interfaces,2016,8(24):15333-15340.
- [137]Chen Y X,Ge Q Q,Shi Y,et al.General space-confined onsubstrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films[J].Journal of the American Chemical Society,2016,138(50):16196-16199.
- [138]Xu B,Bi D Q,Hua Y,et al.A low-cost spiro[fluorene-9,9′-xanthene]-based hole transport material for highly efficient solidstate dye-sensitized solar cells and perovskite solar cells[J].Energy&Environmental Science,2016,9(3):873-877.
- [139]Rao H X,Ye S Y,Sun W H,et al.A 19.0%efficiency achieved in CuOx-based inverted CH3NH3Pb I3-xClx solar cells by an effective Cl doping method[J].Nano Energy,2016,27:51-57.
- [140]Yang M J,Zhang T Y,Schulz P,et al.Facile fabrication of large-grain CH3NH3PbI3-x Brx films for high-efficiency solar cells via CH3 NH3Br-selective Ostwald ripening[J].nature communications,2016,7:12305.
- [141]Jiang Q,Zhang L Q,Wang H L,et al.Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2Pb I3-based perovskite solar cells[J].nature energy,2016,2:16177.
- [142]Bi Z N,Liang Z R,Xu X Q,et al.Fast preparation of uniform large grain size perovskite thin film in air condition via spray deposition method for high efficient planar solar cells[J].Solar Energy Materials&Solar Cells,2017,162:13-20.
- [143]Fan L,Ding Y,Shi B,et al.Novel insight into the function of pc61bm in efficient planar perovskite solar cells[J].Nano Energy,2016,27:561-568.
- [144]Li W Z,Li J W,Li J L,et al.Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K[J].Journal of Materials Chemistry A,2016,4:17104-17110.
- [145]liu C,Fan J D,Li H L,et al.Highly efficient perovskite solar cells with substantial reduction of lead content[J].Scientific Reports,2016,6:35705.
- [146]Huang Y,Zhu J,Ding Y,et al.TiO2 sub-microsphere film as scaffold layer for efficient perovskite solar cells[J].ACS Applied Materials&Interfaces,2016,8(12):8162-8167.
- [147]Chen W C,Kong F T,Li Z Q,et al.Superior light-harvesting heteroleptic ruthenium(II)complexes with electron-donating antennas for high performance dye-sensitized solar cells[J].ACSApplied Materials&Interfaces,2016,8(30):19410-19417.
- [148]Guo F L,Li Z Q,Liu X P,et al.Metal free sensitizers containing hydantoin acceptor as high performance anchoring group for dye‐sensitized solar cells[J].Advanced Functional Materials,2016,26(31):5733-5740.
- [149]科学网[EB/OL].http://news.sciencenet.cn/htmlnews/2016/8/354251.shtm,2017-05-01.
- [150]Gao L,Zhang Z G,Xue L,et al.All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%[J].Advanced Materials,2016,28(9):1884-1890.
- [151]Gao L,Zhang Z G,Bin H,et al.High efficiency nonfullerene polymer solar cells with medium bandgap polymer donor and narrow bandgap organic semiconductor acceptor[J].Advanced Materials,2016,28(37):8288-8295.
- [152]Bin H,Zhang Z G,Gao L,et al.Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5%efficiency[J].Journal of the American Chemical Society,2016,138(13):4657-4664.
- [153]Yang Y,Zhang Z G,Bin H,et al.Side-chain isomerization on n-type organic semiconductor ITIC acceptor make 11.77%high efficiency polymer solar Cells[J].Journal of the American Chemical Society,2016,138(45):15011-15018.
- [154]Bin H,Gao L,Zhang Z G,et al.11.4%efficiency nonfullerene polymer solar cells with trialkylsilyl substituted2D-conjugated polymer as donor[J].Nature Communications,2016,7:13651.
- [155]Yang Y,Zhang Z G,Bin H,et al.Side-chain isomerization on n-type organic semiconductor ITIC acceptor make 11.77%high efficiency polymer solar cells[J].Journal of the American Chemical Society,2016,138(45):15011-15018.
- [156]Li S S,Ye L,Zhao W C,et al.Energy-level modulation of small-molecule electron acceptors to achieve over 12%efficiency in polymer solar cells[J].Advanced Materials,2016,28:9423-9429.
- [157]Lu H,Zhang J C,Chen J Y,et al.Ternary-blend polymer solar cells combining fullerene and nonfullerene acceptors to synergistically boost the photovoltaic performance[J].Advanced Materials,2016,28(43):9559-9566.
- [158]Liu T,Guo Y,Yi Y P,et al.Ternary organic solar cells based on two compatible nonfullerene acceptors with power conversion efficiency 10%[J].Advanced Materials,2016,28(45):10008-10015.
- [159]Chen X,Liu Q,Wu Q L,et al.Incorporating graphitic carbon nitride(g-C3N4)quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement[J].Advanced Functional Materials,2016,26:1719-1728.
- [160]Zhen J M,Liu Q,Chen X,et al.An ethanolaminefunctionalized fullerene as an efficient electron transport layer for high-efficiency inverted polymer solar cells[J].Journal of Materials Chemistry A,2016,4:8072-8079.
- [161]Du J,Du Z L,Hu J S,et al.Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%[J].Journal of the American Chemical Society,2016,138(12):4201-4209.
- [162]Liu F,Zhu J,Xu Y,et al.Scalable noninjection phosphinefree synthesis and optical properties of tetragonal-phase CuInSe2quantum dots[J].Nanoscale,2016,8(19):10021-10025.