新型张力腿平台双模块浮式海上风电机组结构系统的动力响应研究RESEARCH ON DYNAMIC RESPONSE OF NEW TYPE OF TENSION LEG PLATFORM DUAL-MODULES FLOATING OFFSHORE WIND TURBINE STRUCTURE SYSTEM
王安安,周道成,任年鑫,欧进萍
摘要(Abstract):
从浮式海上风电机组的全寿命设计角度出发,以此类风电机组便于安装、替换、维修和拆除为目标,提出了一种新型张力腿平台双模块浮式海上风电机组结构系统。基于BEM方法研究了采用该结构系统的海上风电机组的叶片的气动性能,并综合考虑了风电机组浮体模块和张力腿平台模块的多体机械耦合和水动力耦合效应。选取海上风电机组4种典型工作海况,将新型张力腿平台双模块浮式海上风电机组结构系统与常规张力腿平台单体浮式海上风电机组结构系统的主要动力响应特征进行了对比分析,揭示了该新型张力腿平台双模块浮式海上风电机组结构系统可以有效降低浮式海上风电机组平台的纵荡位移响应,对改善浮式海上风电机组的运行性能具有积极意义。此外,还对该双模块结构系统拆除风电机组的可行性进行了初步验证。
关键词(KeyWords): 浮式海上风电机组;张力腿平台;双模块结构系统;动力响应;动力耦合分析
基金项目(Foundation): 国家自然科学基金项目(52161041,51709040);; 海南省基金项目(520RC552);; 海南大学科研启动基金项目
作者(Author): 王安安,周道成,任年鑫,欧进萍
DOI: 10.19911/j.1003-0417.tyn20200630.01
参考文献(References):
- [1] CHRISTIAN B. The DTU 10-MW reference wind turbine[Z]. Fredericia:Danish Wind Power Research, 2013:2-7.
- [2] BAK C, ZAHLE F, BITSCHE R, et al. Description of the DTU 10 MW reference wind turbine:DTU Wind Energy Report-I-0092[R].[S. l.:s. n.], 2013:32-36.
- [3] XUE W F. Design, numerical modelling and analysis of a spar floater supporting the DTU 10 MW wind turbine[D].Norwegian:Norwegian University of Science and Technology, 2016:1-9.
- [4] TIAN X S. Design, numerical modelling and analysis of TLP floater supporting the DTU 10 MW wind turbine[D].Norwegian:Norwegian University of Science and Technology, 2016:1-7.
- [5] ANDERS M, CATHO B, ANDERS A, et al. Levelised cost of energy for offshore floating wind turbines in a life cycle perspective[J]. Renewable energy, 2014, 66:714-728.
- [6] NEMATBAKHSH A, BACHYNSKI E E, GAO Z, et al.Comparison of wave load effects on a TLP wind turbine by using computational fluid dynamics and potential flow theory approaches[J]. Applied ocean research, 2015, 53:142-154.
- [7] JESSEN K, LAUGESEN K, MORTENSEN S, et al.Experimental validation of aero-hydro-servo-elastic models of a scaled floating offshore wind turbine[J]. Applied sciences, 2019, 9(6):1244-1266.
- [8] REN N X, LI Y G, OU J P. Coupled wind-wave time domain analysis of floating offshore wind turbine based on computational fluid dynamics method[J]. Journal of renewable and sustainable energy, 2014, 6(2):023106.
- [9] REN N X, LI Y G, OU J P. The wind-wave tunnel test of a tension-leg platform type floating offshore wind turbine[J].Journal of renewable and sustainable energy, 2012, 4(6):063117.
- [10] REN N X, LI Y G, OU J P. The effect of additional mooring chains on the motion performance of a floating wind turbine with a tension leg platform[J]. Energies, 2012, 5(4):1135-1149.
- [11] MICHAILIDES C, GAO Z, MOAN T. Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions[J]. Marine structures. 2016, 50:35-54.
- [12] MICHAILIDES C, GAO Z, MOAN T. Experimental study of the functionality of a semisubmersible wind turbine combined with flap-type wave energy converters[J].Renewable energy, 2016, 93:675-690.
- [13] REN N X, GAO Z, MOAN T, et al. Long-term performance estimation of the Spar-Torus-Combination(STC)system with different survival modes[J]. Ocean engineering, 2015,108:716-728.
- [14] REN N X, MA Z, FAN T H, et al. Experimental and numerical study of hydrodynamic responses of a new combined monopile wind turbine and a heave-type wave energy converter under typical operational conditions[J].Ocean engineering, 2018, 159:1-8.
- [15] ANSYS, Inc. ANSYS AQWA User’s Manual[Z].(Release13.0), 2010.