基于灾后定损评估的台风灾害对光伏组件输出功率影响的分析ANALYSIS OF IMPACT OF TYPHOON DISASTER ON THE OUTPUT POWER OF PV MODULES BASED ON POST-DISASTER DAMAGE ASSESSMENT
陈思铭,孙韵琳,王小杨,马武兴
摘要(Abstract):
本文以一座建设于沿海地区并遭受了台风灾害的地面光伏电站为例,利用电致发光(EL)检测和Ⅰ-Ⅴ特性测量等方式,考察了在遭受台风灾害后该光伏电站中光伏组件的输出功率变化情况;并且为了满足灾后定损评估的需求,本文采用t检验方法对测试数据及结果进行了更深入地统计和分析,以评价不同受灾程度光伏组件的输出功率衰减程度。结果表明:因台风造成的光伏组件隐裂可能不会立即导致光伏组件输出功率的衰减,而海水浸泡则会在短时间内加速光伏组件的老化。由此可知,对遭受类似灾害侵袭的光伏电站进行灾后定损评估时,应更加关注光伏组件的浸水问题,尤其是由成分复杂的洪水浸泡导致的光伏组件输出功率衰减问题。
关键词(KeyWords): Ⅰ-Ⅴ特性;电致发光;光伏组件;台风;浸水;灾后定损评估
基金项目(Foundation): 国家市场监督管理总局科技计划项目(2019MK053)
作者(Author): 陈思铭,孙韵琳,王小杨,马武兴
DOI: 10.19911/j.1003-0417.tyn20210814.02
参考文献(References):
- [1] CAROLINE T, DAVID M, ULRIKE J,et al. PV investment technical risk management:Best practice guidelines for risk identification, assessment and mitigation[R/OL].(2017-02-20). http://www.solarbankability.org/fileadmin/sites/www/files/documents/Solar_Bankability_Final_Report.pdf.
- [2]王媛.浅析新时代下我国新能源保险的发展前景——以光伏发电保险为视角[J].纳税, 2018(8):167-170.
- [3]徐凤,肖枫,王伟华,等.北京市光伏保险发展现状与问题分析[J].北方经贸, 2018(12):131-132.
- [4]袁泉.光伏电站发电收入损失保险探析[J].中国保险,2018(1):35-39.
- [5] KONTGES M, ORESKI G, JAHN U, et al. Assessment of photovoltaic module failures in the field[R/OL].(2017-05). https://iea-pvps.org/key-topics/report-assessment-ofphotovoltaic-module-failures-in-the-field-2017.
- [6] GRUNOW P, CLEMENS P, HOFFMANN V, et al.Influence of micro cracks in multi-crystalline silicon solar cells on the reliability of PV modules[C]//Proceedings of the20th EUPVSEC, June 6-10, 2005, WIP, Barcelona, Spain,2005:2042-2047.
- [7] K?NTGES M, KUNZE I, KAJARI-SCHR?DER S,et al. The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks[J]. Solar energy materials and solar cells, 2010, 95(4):1131-1137.
- [8] MARCO P, MAURO C, MARIA A R. A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules[J]. Composite structures, 2013, 95:630-638.
- [9] KAESEWIETER J, HAASE F, KOENTGES M. Model of cracked solar cell metallization leading to permanent module power loss[J]. IEEE journal of photovoltaics, 2016,6(1):28-33.
- [10] DHIMISH M, HOLMES V. Solar cells micro crack detection technique using state-of-the-art electroluminescence imaging[J]. Journal of science:Advanced materials and devices, 2019, 4(4):499-508.
- [11] SPATARU S, HACKE P, SERA D. In-situ Measurement of power loss for crystalline silicon modules undergoing thermal cycling and mechanical loading stress testing[J].Energies, 2020, 14(1):72.
- [12] KING D L, QUINTANA M A, KRATOCHVIL J A, et al.Photovoltaic module performance and durability following long-term field exposure[J]. Progress in photovoltaics:Research and applications, 2000, 8(2):241-256.
- [13] SILVESTRE S, CHOUDER A, KARATEPE E. Automatic fault detection in grid connected PV systems[J]. Solar energy, 2013, 94:119-127.
- [14] KAJARI-SCHR?DER S, KUNZE I, EITNER U, et al.Spatial and orientational distribution of cracks in crystalline photovoltaic modules generated by mechanical load tests[J].Solar energy materials and solar cells, 2011, 95(11):3054-3059.
- [15] DHIMISH M, HOLMES V, MEHRDADI B, et al. The impact of cracks on photovoltaic power performance[J].Journal of science:Advanced materials and devices, 2017,2(2):199-209.
- [16]中国电器工业协会.并网光伏电站用关键设备性能检测与质量评估技术规范:NB/T 10185—2019[S].北京:中国电力出版社, 2020.
- [17] REISE C, MULLER B, MOSER D, et al. Uncertainties in PV system yield predictions and assessments[R/OL].(2018-04)[2021-04-12]. https://iea-pvps.org/keytopics/uncertainties-in-pv-system-yield-predictions-andassessments/.
- [18]贾俊平,何晓群,金勇进.统计学:第7版[M].北京:中国人民大学出版社, 2018.