基于数据挖掘的电池储能电站运维技术综述OPERATION AND MAINTENANCE TECHNOLOGY OF BATTERY ENERGY STORAGE POWER STATION BASED ON DATA MINING
田刚领,叶晖,张柳丽,崔美琨,李爱魁
摘要(Abstract):
运维技术是电池储能电站规模化推广应用的关键。针对电池储能电站运维成本高、工作量大且运维数据利用价值小等问题,综述了数据挖掘技术及其在电池储能电站运维中的应用。根据电池管理系统(BMS)的历史数据及在运数据,可对电池的健康状态进行预测;通过对电池柜密闭环境内的气体进行监测与分析,具有提前预警火灾风险的作用。基于电池储能电站特征量分析,通过大数据实现对电站内电气设备故障精准定位,制定科学检修计划,并在此基础上提高电池储能电站的智能化运维水平,为智能运维大数据平台建设提供基础。
关键词(KeyWords): 电池储能电站;数据挖掘;运维;新能源波动;调峰调频
基金项目(Foundation): 平高集团科技项目——储能电站智能运维平台开发及应用研究PGKJ2020-077(529100200021)
作者(Author): 田刚领,叶晖,张柳丽,崔美琨,李爱魁
DOI: 10.19911/j.1003-0417.tyn20220406.02
参考文献(References):
- [1]陈亭轩,徐潇源,严正,等.基于深度强化学习的光储充电站储能系统优化运行[J].电力自动化设备,2021,41(10):90-98.
- [2]WEN J Y,LIU J,LONG Y.Solution to short-term frequency response of wind farms by using energy storage systems[J].IET renewable power generation,2016,10(5):669-678.
- [3]NING Z,HU Z,BO S,et al.A source-grid-load coordinated power planning model considering the integration of wind power generation[J].Applied energy,2016,168:13-24.
- [4]WANG T,FU J,ZHENG M,et al.Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries[J].Applied energy,2018,227:613-623.
- [5]LI J,ZHANG T,DUA N S,et al.Design and implementation of lead carbon battery storage system[J].IEEE access,2019,7:32989-33000.
- [6]牛东晓,谷志红,邢棉,等.基于数据挖掘的SVM短期负荷预测方法研究[J].中国电机工程学报,2006(18):6-12.
- [7]张成,白建波,兰康,等.基于数据挖掘和遗传小波神经网络的光伏电站发电量预测[J].太阳能学报,2021,42(3):375-382.
- [8]蒲天骄,乔骥,韩笑,等.人工智能技术在电力设备运维检修中的研究及应用[J].高电压技术,2020,46(2):369-383.
- [9]王志勇,郭创新,曹一家.基于模糊粗糙集和神经网络的短期负荷预测方法[J].中国电机工程学报,2005(19):7-11.
- [10]王小君,毕圣,徐云鹍,等.基于数据挖掘技术和支持向量机的短期负荷预测[J].电测与仪表,2016,53(10):62-67.
- [11]周艳真,吴俊勇,冀鲁豫,等.基于两阶段支持向量机的电力系统暂态稳定预测及预防控制[J].中国电机工程学报,2018,38(1):137-147,350.
- [12]孙勇,宋锐,孟德霞,等.基于数据挖掘的抽水蓄能电站机组状态预测[J].电力与能源,2020,41(3):354-356.
- [13]赵宇思,吴林林,宋玮,等.数据挖掘方法在新能源发电中的应用[J].华北电力技术,2015,10:47-51.
- [14]陈娟,惠东,范茂松,等.基于粗糙集的电池储能电站海量数据处理方法[J].中国电力,2022,55(2):44-50,208.
- [15]蔡泽祥,马国龙,孙宇嫣,等.基于数据挖掘的电力设备运维与决策分析方法[J].华南理工大学学报(自然科学版),2019,47(6):57-64,71.
- [16]刘长良,许涛,王梓齐,等.基于智能电厂大数据的关键参数目标值挖掘技术[J].热力发电,2019,48(9):14-21.
- [17]李建林,武亦文,王楠,等.吉瓦级电化学储能电站信息架构与安防体系综述[J].电力系统自动化,2021,45(23):179-191
- [18]ALIEV R A,ALIEV R R,GUIRIMOV B,et al.Dynamic data mining technique for rules extraction in a process of battery charging[J].Applied soft computing,2008,8(3):1252-1258.
- [19]余晓玲,王春玲,韩晓娟.基于数据挖掘技术的电池储能系统SOC状态评估[J].电器与能效管理技术,2017(13):68-73.
- [20]赵泽昆.基于数据挖掘的大容量电池储能系统建模[D].北京:华北电力大学,2017.
- [21]何志伟,钱智凯,高明煜,等.一种基于深度学习的电池SOC和SOH联合估计方法:112269134A[P].2020-09-10.
- [22]WANG Y C,MENG D W,WANG Y B,et al.Research on health state estimation methods of lithium-ion battery for small sample data[J].Energy reports,2022,8:2686-2698.
- [23]WEI Z X,HAN X J,LI J R.State of health assessment for echelon utilization batteries based on deep neural network learning with error correction[J].Journal of energy storage,2022,51:104428.
- [24]冯雪松.大规模电池群组现场环境数据挖掘、建模与应用研究[D].成都:电子科技大学,2020.
- [25]王铭民,孙磊,郭鹏宇,等.基于气体在线监测的磷酸铁锂储能电池模组过充热失控特性[J].高电压技术,2021,47(1):279-286.
- [26]谌安军.一种火焰的视频识别方法和一种火灾监控方法及其系统:101441712A[P].2008-12-25.
- [27]约翰·A·蒂韦特,卡里·S·斯通,理查德.A·格尔尼.利用电化学电池的气体监控器和操作方法:CN1998033[P].2005-04-28.
- [28]SEOK-HA P,WOONG-JAE L,DONG-JU L.On-Site evaluation of BESS fire prevention system considering the enviro nmental factors[C]//2 4th Internatio nal Conference on Electrical Machines and Systems(ICEMS),October 31-November 3,2021,Gyeongju,Korea.
- [29]LI X,LIU X,ZHANG Y.Research and development of fire alarm detection device for lithium ion battery based on strain measurement[J].IOP conference series:Earth andenvironmental science,2020,605:012005-012013.
- [30]王春力,贡丽妙,亢平,等.锂离子电池储能电站早期预警系统研究[J].储能科学与技术,2018,7(6):1152-1158.
- [31]QIAO X,LI G,ZHANG Y J,et al.Fault diagnosis and abnormality detection of lithium-ion battery packs based on statistical distribution[J].Journal of power sources,2021,482:228964.
- [32]王帅,韩伟,陈黎飞,等.锂离子电池健康管理问题研究综述[J].电源技术,2020,44(6):920-923.
- [33]TAESIC K,DARSHAN M,AMITA,et al.Cloud-based battery condition monitoring and fault diagnosis platform for large-scale lithium-ion battery energy storage systems[J].Energies,2018,11(1):125.
- [34]陈哲.基于BP神经网络的配网设备故障预测[D].广州:广东工业大学,2017.
- [35]乔涵.通信模块化运检与故障诊断技术应用[Z].国网新疆电力有限公司信息通信公司,2019-08-10.
- [36]SHI Z,ZENG Y,SUN L Q.Operation and maintenance analysis for power communication networks based on big data[C]//2016 China International Conference on Electricity Distribution(CICED),August 10-13,2016,Xi'an,China.
- [37]LEE H,BERE G,KIM K,et al.Deep learning-based false sensor data detection for battery energy storage systems[C]//IEEE CyberPELS(CyberPELS)Conference,October 13,2020,Miami,FL,USA.
- [38]郭建鹏,刘明灿,李振翔,等.适应电能替代需要的储能电站检修周期优化[J].广东电力,2018,31(7):24-29.
- [39]王康.综合能源站电气二次状态评估方法研究[D].北京:华北电力大学,2021.
- [40]ZHENG Y,REN B,ZHANG H,et al.Improved decision neural network(IDNN)model based secondary system fault location method involves outputting fault location result,reporting fault location result to maintenance personnel processing and storing historical fault sample set in background database:CN113283462-A[P].2022-01-08.
- [41]李远.基于大数据的云计算中心智能运维系统的应用[J].电力设备管理,2021(8):37-38,41.
- [42]叶进,卢泉,王钰淞等.基于级联随机森林的光伏故障诊断模型研究[J].太阳能学报,2021,42(3):358-362.
- [43]王小红,于海,蒋应伟,等.基于多模块集成的储能电站综合管理系统及信息交互方法:CN110365114A[P].2019-10-22.
- [44]余斌,周挺,熊尚峰,等.一种基于云管边端的储能电站智能运维分析系统:202111083557.2[P].2020-11-12.