面向TOPCon晶体硅太阳电池产业应用的管式PECVD装备及其配套技术分析ANALYSIS OF TUBULAR PECVD EQUIPMENT AND ITS SUPPORTING TECHNOLOGY FOR INDUSTRIAL APPLICATION OF TOPCON CRYSTALLINE SILICON SOLAR CELLS
曾俞衡,陈晖,张文博,程海良,廖明墩,谢利华,李旺鹏,刘景博,张青山,刘伟,王玉明,闫宝杰,叶继春
摘要(Abstract):
隧穿氧化硅钝化接触(TOPCon)晶体硅太阳电池(下文简称为“TOPCon太阳电池”)被广泛认为是产业用下一代主流高效晶体硅太阳电池技术,目前仍处于产业化应用开发阶段,在技术路线选择、核心材料制备等方面仍存在不少难题有待解决,尚未实现大规模量产推广。首先介绍了TOPCon太阳电池技术的研究进展,并分析了现有产业技术的不足,这种不足主要体现在现阶段该产业采用的主流的低压化学气相沉积(LPCVD)技术存在不足;然后详细分析了等离子体增强化学气相沉积(PECVD)技术的优、缺点及产业的应用现状,重点介绍了管式PECVD装备及其配套技术(下文简称为“管式PECVD装备技术”)的特点及发展进程,并分析了该装备技术在TOPCon太阳电池量产推广方面的应用潜力。研究结果表明:管式PECVD装备技术在制备低成本、高性能的TOPCon太阳电池用重掺杂多晶硅层和超薄氧化硅层等方面具有综合优势,其在非晶硅层沉积和原位掺杂等关键步骤的实现方面效率更高,可集成超薄氧化硅层的原位制备,又兼具装备价格低、维护简易、可靠性高、占地面积小等优点,因此,管式PECVD装备技术有望成为TOPCon太阳电池生产的一种重要的产业化技术路线。
关键词(KeyWords): 光伏发电;晶体硅太阳电池;隧穿氧化硅钝化接触;管式PECVD
基金项目(Foundation): 国家自然科学基金(61974178);; 中科院青年促进会项目(2018333);; 浙江省自然科学基金(LY19F040002);; 国家重点研发计划(2018YFB1500403);; 宁波市“科技创新2025”重大专项(2020Z098);; 浙江省重点研发计划(2021C01006);; 2021年辽宁省首批揭榜挂帅科技攻关项目;; 江苏省科技副总项目(FZ20200358)
作者(Author): 曾俞衡,陈晖,张文博,程海良,廖明墩,谢利华,李旺鹏,刘景博,张青山,刘伟,王玉明,闫宝杰,叶继春
DOI: 10.19911/j.1003-0417.tyn20210927.03
参考文献(References):
- [1] METZ A,ADLER D,BAGUS S,et al. Industrial high performance crystalline silicon solar cells and modules based on rear surface passivation technology[J]. Solar energy materials and solar cells,2014,120:417-425.
- [2] YOSHIKAWA K,KAWASAKI H,YOSHIDA W,et al.Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J].Nature energy,2017,2(5):17032.
- [3] RICHTER A,BENICK J,FELDMANN F,et al. n-Type Si solar cells with passivating electron contact:identifying sources for efficiency limitations by wafer thickness and resistivity variation[J]. Solar energy materials and solar cells,2017,173:96-105.
- [4] FELDMANN F,BIVOUR M,REICHEL C,et al.Tunnel oxide passivated contacts as an alternative to partial rear contacts[J]. Solar energy materials and solar cells,2014,131:46-50.
- [5] DOLD P. Recent and future developments in Si-based photovoltaics[C]//Proceedings of the CPVC17,August 29-31,Hohhot,China.[S.l.:s.n.],2017.
- [6] FELDMANN F,BIVOUR M,REICHEL C,et al. A passivated rear contact for high-efficiency n-type silicon solar cells enabling high Voc’s and FF>82%[C]//28th European Photovoltaic Solar Energy Conference and Exhibition(EU PVSEC 2013),September 30-October 4,2013,Paris,France.[S.l.:s.n.],2013.
- [7] STEINHAUSER B,NIEWELT T,RICHTER A,et al. Life(time)at the limits——very high lifetimes in crystalline silicon measured by photoconductance and photoluminescence[C]//36th European Photovoltaic Solar Energy Conference and Exhibition(EU PVSEC 2019),2019,9-13,Marseille,France.[S.l.:s.n.],2019.
- [8] PEIBST R,LARIONOVA Y,REITER S,et al.Implementation of n+and p+polo junctions on front and rear side of double-side contacted industrial silicon solar cells[C]//32nd European Photovoltaic Solar Energy Conference and Exhibition(EU PVSEC 2016),June 20-24,2016,Munich,Germany.[S.l.:s.n.],2016.
- [9] MACK S,SCHUBE J,FELLMETH T,et al. Metallisation of boron-doped polysilicon layers by screen printed silver pastes[J]. Physica status solidi——rapid research letters,2017,11(12):1700334.
- [10] LIN Y R,YANG Z H,LIU Z K,et al. Dual-functional carbon-doped polysilicon films for passivating contact solar cells:regulating physical contacts while promoting photoelectrical properties[J]. Energy&environmental science,2021,14:6406-6418.
- [11] RICHTER A,MüLLER R,BENICK J,et al. Design rules for high-efficiency both-sidescontacted silicon solar cells with balanced charge carrier transport and recombination losses[J]. Nature energy,2021,6:429-438.
- [12] HAASE F,HOLLEMANN C,SCH?FER S,et al. Laser contact openings for local poly-Si-metal contacts enabling26.1%-efficient POLO-IBC solar cells[J]. Solar energy materials and solar cells,2018,186:184-193.
- [13] CHEN Y F,CHEN D M,LIU C F,et al. Mass production of industrial tunnel oxide passivated contacts(i-TOPCon)silicon solar cells with average efficiency over 23%and modules over 345 W[J]. Progress in photovoltaics:research and applications,2019,27(10):827-834.
- [14] CHEN D,CHEN Y,WANG Z,et al. 24.58%total area efficiency of screen-printed,large area industrial silicon solar cells with the tunnel oxide passivated contacts(i-TOPCon)design[J]. Solar energy materials and solar cells,2020,206:110258.
- [15] STEINHAUSER B,POLZIN J-I,FELDMANN F,et al.Excellent surface passivation quality on crystalline silicon using industrial-scale direct-plasma TOPCon deposition technology[J]. Solar RRL,2018,2(7):1800068.
- [16] TEMMLER J,POLZIN J-I,FELDMANN F,et al. Inline PECVD deposition of poly-Si-based tunnel oxide passivating contacts[J]. Physica status solidi(A)applications and materials,2018,215(23):1800449.
- [17] DUTTAGUPTA S,NANDAKUMAR N,PADHAMNATH P,et al. MonoPoly?cells:large-area crystalline silicon solar cells with fire-through screen printed contact to doped polysilicon surfaces[J]. Solar energy materials and solar cells,2018,187:76-81.
- [18] NANDAKUMAR N,RODRIGUEZ J,KLUGE T,et al. Approaching 23%with large-area monoPoly cells using screen-printed and fired rear passivating contacts fabricated by inline PECVD[J]. Progress in photovoltaics:research and applications,2018,27(1):107-112.
- [19] DAVID L,HüBNER S,MIN B,et al. Fired-only passivating poly-Si on oxide contacts with DC-sputtered insitu phosphorous-doped silicon layers[C]//37th European Photovoltaic Solar Energy Conference and Exhibition(EU PVSEC 2020),September 7-11,2020,(online).[S.l.:s.n.],2020.
- [20] YAN D,CUEVAS A,PHANG S P,et al. 23%efficient p-type crystalline silicon solar cells with hole-selective passivating contacts based on physical vapor deposition of doped silicon films[J]. Applied physics letters,2018,113:061603.
- [21] MERKLE A,SEREN S,KNAUSS H,et al. Atmospheric pressure chemical vapor deposition of in-situ doped amorphous silicon layers for passivating contacts[C]//35th European Photovoltaic Solar Energy Conference and Exhibition(EU PVSEC 2018),September 24-28,2018,Brussels,Belgium.[S.l.:s.n.],2018.
- [22] MEYERSON B S,OLBRICHT W. Phosphorusdoped polycrystalline silicon via LPCVD:I. Process characterization[J]. Journal of the electrochemical society,1984,131(10):2361.
- [23] FELDMANN F,NICOLAI M,MüLLER R,et al.Optical and electrical characterization of poly-Si/SiOx contacts and their implications on solar cell design[J].Energy procedia,2017,124:31-37.
- [24] REITER S,KOPER N,REINEKEKOCH R,et al.Parasitic absorption in polycrystalline Si-layers for carrierselective front junctions[J]. Energy procedia,2016,92:199-204.
- [25] FRANK F,FELLMETH T,STEINHAUSER B,et al. Large area TOPCon cells realized by a PECVD process[C]//36th European Photovoltaic Solar Energy Conference and Exhibition(EU PVSEC 2019),2019,9-13,Marseille,France.[S.l.:s.n.],2019.
- [26] YANG Q,LIU Z,LIN Y,et al. Passivating contact with phosphorus-doped polycrystalline silicon-nitride with an excellent implied open-circuit voltage of 745 mV and its application in 23.88%efficiency TOPCon solar cells[J].Solar RRL,2021,5(11):2100644.
- [27] LI Q,TAO K,SUN Y,et al. Replacing the amorphous silicon thin layer with microcrystalline silicon thin layer in TOPCon solar cells[J]. Solar energy,2016,135:487-492.
- [28] TAO K,LI Q,HOU C,et al. Application of a-Si/μc-Si hybrid layer in tunnel oxide passivated contact n-type silicon solar cells[J]. Solar energy,2017,144:735-739.
- [29] TAO Y,CHANG E L,UPADHYAYA A,et al. 730 mV implied Voc enabled by tunnel oxide passivated contact with PECVD grown and crystallized n+polycrystalline Si[C]//2015 IEEE 42nd Photovoltaic Specialist Conference(PVSC),June 14-19,2015,New Orleans,LA,USA.[S.l.:s.n.],2015.
- [30] MORISSET A,CABAL R,GRANGE B,et al. Highly passivating and blister-free hole selective poly-silicon based contact for large area crystalline silicon solar cells[J]. Solar energy materials and solar cells,2019,200:109912.
- [31] MORISSET A,CABAL R,GRANGE B,et al.Conductivity and surface passivation properties of borondoped poly-silicon passivated contacts for c-Si solar cells[J].Physica status solidi(A)applications and materials,2018,216(10):1800603.
- [32] KIM H,BAE S,JI K-S,et al. Passivation properties of tunnel oxide layer in passivated contact silicon solar cells[J].Applied surface science,2017,409:140-148.
- [33] CHOI S,KWON O,MIN K H,et al. Formation and suppression of hydrogen blisters in tunnelling oxide passivating contact for crystalline silicon solar cells[J].Scientific reports,2020,10(1):9672.
- [34] INGENITO A,NOGAY G,JEANGROS Q,et al. A passivating contact for silicon solar cells formed during a single firing thermal annealing[J]. Nature energy,2018,3(9):800-808.
- [35] LOZACH M,NUNOMURA S,SAI H,et al. Passivation property of ultrathin SiOx:H/a-Si:H stack layers for solar cell applications[J]. Solar energy materials and solar cells,2018,185:8-15.
- [36] GAO T,YANG Q,GUO X,et al. An industrially viable TOPCon structure with both ultra-thin SiOx and n+-poly-Si processed by PECVD for p-type c-Si solar cells[J]. Solar energy materials&solar cells,2019,200:109926.
- [37] HUANG Y,LIAO M,WANG Z,et al. Ultrathin silicon oxide prepared by in-line plasma-assisted N2O oxidation and the application for n-type polysilicon passivated contact[J].Solar energy materials&solar cells,2020,208:110389.
- [38] FINK C K,NAKAMURA K,ICHIMURA S,et al.Silicon oxidation by ozone[J]. Journal of physics:condensed matter,2009,21:183001.
- [39] KAFLE B,GORAYA B S,MACK S,et al. TOPCon——technology options for cost efficient industrial manufacturing[J]. Solar energy materials and solar cells,2021,227:111100.