光伏组件故障诊断技术综述OVERVIEW OF PV MODULES FAULT DIAGNOSIS TECHNOLOGY
孙建民,梁凌,李庚达,段震清,胡文森
摘要(Abstract):
随着光伏电站装机容量的规模化增长,光伏组件故障的快速、准确诊断对光伏电站的可靠运行尤为重要。当前,针对光伏组件故障进行诊断的方法主要有5类,分别是:基于电路结构的光伏组件故障诊断方法、基于I-V输出特性曲线的光伏组件故障诊断方法、基于红外图像检测的光伏组件故障诊断方法、基于数学模型的光伏组件故障诊断方法和基于智能算法的光伏组件故障诊断方法。本文对关于这5类故障诊断方法的研究进行了综述与分析,并详细阐述了各类故障诊断方法应用时的优、缺点,最后对光伏组件故障诊断技术未来的重点研究方向进行了预测。
关键词(KeyWords): 光伏组件;故障诊断;电路结构;I-V输出特性曲线;红外图像;数学模型;智能算法
基金项目(Foundation): 国家能源集团科技创新项目(GJNY-20-123)
作者(Author): 孙建民,梁凌,李庚达,段震清,胡文森
DOI: 10.19911/j.1003-0417.tyn20201105.01
参考文献(References):
- [1]李海玲,陈旭,吕芳,等.中国高原气候区下光伏组件实际运行衰减分析[J].太阳能学报, 2019, 40(6):1560-1566.
- [2]国家能源局.太阳能发展“十三五”规划[J].太阳能,2016(12):5-14.
- [3]尹也泽,张栋.光伏产业的变迁和现状[J].团结,2020(2):22-26.
- [4]师佳炜.西北地区光伏发电产业竞争力影响因素分析[D].西安:西安理工大学, 2019.
- [5]温浚铎,郭珂,王瀚笠,等.光伏阵列热斑故障在线检测方法研究[J].电子制作, 2019(15):55-58, 76.
- [6]彭炳荣.光伏阵列故障检测方法与系统设计[D].广州:暨南大学, 2018.
- [7]李云桥.基于改进BP神经网络的光伏阵列多传感器故障检测定位方法研究[D].西安:西安理工大学, 2018.
- [8]宗宪爽.一种新的光伏阵列故障诊断方法[D].吉林:东北电力大学, 2018.
- [9]吴延霞.光伏阵列故障在线检测方法研究[D].淄博:山东理工大学, 2018.
- [10]张朝.可拓扑重构的光伏阵列故障诊断方法研究[D].南宁:广西大学, 2016.
- [11]张晓娜,高德东,刘海雄,等.一种新型光伏阵列多传感器故障检测定位方法[J].可再生能源, 2016, 34(2):166-172.
- [12]程泽,徐勇,董梦男.一种新的光伏阵列故障诊断与定位方法[J].传感器与微系统, 2013, 32(7):26-28.
- [13]宋文海,李田泽,乔家振,等. TCT结构光伏阵列故障检测方法研究[J].电源技术, 2019, 43(7):1164-1167.
- [14]钟丹.基于复合信息融合技术的光伏阵列故障诊断研究[D].天津:天津大学, 2012.
- [15]李兵峰.光伏阵列故障检测方法的研究[D].天津:天津大学, 2010.
- [16]程泽,李兵峰,刘力,等.一种新型结构的光伏阵列故障检测方法[J].电子测量与仪器学报, 2010, 24(2):131-136.
- [17] LIU Y L, LI B F, CHENG Z. Research on PV module structure based on fault detection[C]//2010 Chinese Control and Decision Conference, May 26-28, 2010, Xuzhou,China.
- [18] SPATARU S, SERA D, KEREKES T, et al. Diagnostic method for photovoltaic systems based on light I-V measurements[J]. Solar energy, 2015, 119:29-44.
- [19]陈宇航,闫腾飞,谢添,等.基于功率损失和U-I特性综合考虑的光伏组件故障诊断方法[J].电机与控制应用,2016(11):92-97.
- [20] LI Y L, DING K, ZHANG J W, et al. A fault diagnosis method for photovoltaic arrays based on fault parameters identification[J]. Renewable energy, 2019, 143:52-63.
- [21] XU X L, WANG H, XU X L, et al. Method for diagnosing photovoltaic array fault in solar photovoltaic system[C]//2011Asia-Pacific Power and Energy Engineering Conference,March 25-28, 2011, Wuhan, China.
- [22] CHEN Z C, CHEN Y X, WU L J, et al. Accurate modeling of photovoltaic modules using a 1-D deep residual network based on I-V characteristics[J]. Energy conversion and management, 2019, 186(APR):168-187.
- [23] CHEN Z C, WU L J, CHENG S Y, et al. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics[J]. Applied energy, 2017(204):912-931.
- [24]王培珍,沈玉樑,杨维翰.太阳光伏阵列的温度与红外特性分析[J].太阳能学报, 2005, 26(1):82-85.
- [25] KING D L, KRATOCHVIL J K, QUINTANA M A, et al.Applications for infrared imaging equipment in photovoltaic cell, module, and system testing[C]//Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, September 15-22, 2000, Anchorage, AK, USA.
- [26]王元章,李智华,吴春华.光伏系统故障诊断方法综述[J].电源技术, 2013, 37(9):1700-1705.
- [27] MATTEI M, NOTTON G, CRISTOFARI C, et al.Calculation of the polycrystalline PV module temperature using a simple method of energy balance[J]. Renewable energy, 2006, 31(4):553-567.
- [28]王培珍,郑诗程.基于红外图像的太阳能光伏阵列故障分析[J].太阳能学报, 2010, 31(2):197-202.
- [29]董栋,陈光梦.基于近红外图像的硅太阳能电池故障检测方法[J].信息与电子工程, 2010, 8(5):539-543.
- [30] ALSAFASFEH M, ABDEL-QADER I, BAZUIN B J,et al. Unsupervised fault detection and analysis for large photovoltaic systems using drones and machine vision[J].Energies, 2018, 11(9):2252.
- [31]赵雪,杨晨,夏晨蹊,等.基于热像仪的太阳能电池故障诊断[J].贵州大学学报(自然科学版), 2019, 36(1):60-65.
- [32]车曦.基于红外图像识别的光伏组件热斑故障检测方法研究[D].重庆:重庆大学, 2015.
- [33] UMA J, MUNIRAJ C, SATHYA N. Diagnosis of photovoltaic(PV)panel defects based on testing and evaluation of thermal image[J]. Journal of testing and evaluation, 2019, 47(6):4249-4262.
- [34]黄永华,朱洪华,陈永刚.光伏阵列故障状态红外图像的分割研究与实现[J].莆田学院学报, 2011, 18(2):42-45.
- [35]王培珍,王群京,杨维翰.太阳能光伏阵列红外图像的特征提取[J].合肥工业大学学报(自然科学版), 2004(10):1187-1190.
- [36]傅望,周林,郭珂,等.光伏电池工程用数学模型研究[J].电工技术学报, 2011, 26(10):211-216.
- [37]王元章,李智华,吴春华.一种四参数的光伏组件在线故障诊断方法[J].中国电机工程学报, 2014, 34(13):2078-2087.
- [38]但扬清,刘文颖,朱艳伟.局部阴影条件下光伏阵列Matlab仿真及输出效率分析[J].太阳能学报, 2013,34(6):997-1001.
- [39]韩伟,王宏华,王成亮,等.基于参数辨识的光伏组件故障诊断模型[J].电网技术, 2015(5):1198-1204.
- [40] STELLBOGEN D. Use of PV circuit simulation for fault detection in PV array fields[C]//Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference,May 10-14, 1993, Louisville, KY, USA.
- [41]周笛青,吴春华,李智华,等.局部阴影下光伏组件建模及输出特性研究[J].太阳能学报, 2014, 35(11):2098-2105.
- [42]王瀚笠,郭珂,袁丹夫,等.光伏阵列简化模型与故障分析[J].通信电源技术, 2019, 36(6):4-10.
- [43]兰琴丽,吴雨川.太阳能光伏发电智能诊断系统研究综述[J].武汉科技学院学报, 2008, 21(4):23-26.
- [44] CHINE W, MELLIT A, LUGHI V, et al. A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks[J]. Renewable energy, 2016, 90:501-512.
- [45]陈凌,韩伟,张经炜.基于数据融合的光伏组件故障诊断[J].电网技术, 2017, 41(6):1864-1873.
- [46]张杰,易辉,张霞,等.基于布谷鸟算法的光伏组件故障诊断模型优化[J].电源技术, 2020, 44(1):76-79.
- [47]王福忠,裴玉龙.光伏阵列故障类型的改进型RBF神经网络识别算法[J].电源学报, 2019, 17(1):73-79.
- [48] BEHRENS G, DERCHO A, QUAKERNACK H, et al. Data mining methods for failure classification on PV-modules monitored under field-conditions[EB/OL].[2020-11-04]. https://www.eupvsec-proceedings.com/proceedings?paper=39633. DOI:10.4229/EUPVSEC20162016-5DO.12.4.
- [49] MEKKI H, MELLIT A, SALHI H. Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules[J]. Simulation modelling practice&theory, 2016, 67:1-13.
- [50] LEVA S, MUSSETTA M, OGLIARI E. PV module fault diagnosis based on microconverters and day-ahead forecast[J]. IEEE transactions on industrial electronics,2019, 66(5):3928-3937.
- [51]吴越,陈志聪,吴丽君,等.基于KELM的光伏组件故障诊断方法[J].电源技术, 2018, 42(4):532-535.
- [52]徐立娟,吴春华,王元章,等.基于决策树的光伏组件故障诊断方法研究[J].电工电能新技术, 2017, 36(6):83-88.
- [53]贾嵘,李云桥,张惠智,等.基于改进BP神经网络的光伏阵列多传感器故障检测定位方法[J].太阳能学报,2018, 39(1):110-116.
- [54] LIU Y,ZHU X,YANG J. Fault diagnosis of PV array based on optimised BP neural network by improved adaptive genetic algorithm[J]. The Journal of engineering,2017(13):1427-1431.
- [55] ALAJMI M, ABDEL-QADER I. Fault detection and localization in solar photovoltaic arrays using the currentvoltage sensing framework[C]//2016 IEEE International Conference on Electro Information Technology(EIT), May19-21, 2016, Grand Forks, ND, USA.