2019年中国光伏技术发展报告——新型太阳电池的研究进展(2)Report on 2019 China PV technology development—— Research progress of new solar cells(part 2)
摘要(Abstract):
<正>2.4钙钛矿太阳电池制备工艺的改进北京大学的朱瑞课题组与英国牛津大学的SNAITH H J、英国萨里大学的ZHANG W等合作,首次提出了"胍盐辅助二次生长"的方法,开创性地实现了钙钛矿薄膜半导体特性的调控,显著降低了电池中非辐射复合的能量损失,在提升电池开路电压方面取得了突破,首次在反式结构电
关键词(KeyWords):
基金项目(Foundation):
作者(Author):
参考文献(References):
- [31] LUO D, YANG W, WANG Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells[J].Science, 2018, 360:1442-1446.
- [32] LI M, ZHAO C, WANG Z K, et al. Interface modification by ionic liquid:A Promising candidate for indoor light harvesting and stability improvement of planar perovskite solar cells[J]. Advanced energy materials, 2018, 8:1801509.
- [33] JIANG L L, WANG Z K, Li M, et al. Passivated perovskite crystallization via g-C3N4 for high-performance solar cells[J]. Advanced functional materials, 2018, 28:1705875.
- [34] ZHANG J, LIANG W, YU W, et al. A two-stage annealing strategy for crystallization control of CH3NH3PbI3 films toward highly reproducible perovskite solar cells[J]. Small,2018, 14:1800181.
- [35] ZHENGHY,LIUG,ZHUL Z,etal.Enhanced performance and stability of perovskite solar cells using NH4I interfacial modifier[J]. ACS applied materials&interfaces, 2017, 9:41006-41013.
- [36] WU Y, SHI X, DING X, et al. Incorporating 4-tertbutylpyridine in an antisolvent:A facile approach to obtain highly efficient and stable perovskite solar cells[J]. ACS applied materials&interfaces, 2018, 10:3602-3608.
- [37] ZUO L, GUO H, JARIWALA S, et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells[J]. Science advances, 2017, 3:e1700106.
- [38] CHEN W, WU Y, TU B, et al. Inverted planar organicinorganic hybrid perovskite solar cells with NiOx holetransport layers as light-in window[J]. Applied surface science, 2018, 451:325-332.
- [39] CHEN W, WU Y, FAN J, et al. Understanding the doping effect on NiO:Toward high-performance inverted perovskite solar cells[J]. Advance energy materials, 2018, 8:1703519.
- [40] CHEN W, ZHOU Y, WANG L, et al. Molecule-doped nickel oxide:Verified charge transfer and planar inverted mixed cation perovskite solar cell[J]. Advanced materials, 2018,30:1800515.
- [41] LIU X, ZHENG X, WANG Y, et al. Dopant-free hole transport materials based on methoxytriphenylamine substituted indacenodithienothiophene for solution processed perovskite solar cells[J]. ChemSusChem, 2017,10:2833.
- [42] YU W, YU S, ZHANG J, et al. Two-in-one additiveengineering strategy for improved air stability of planar perovskite solar cells[J]. Nano energy, 2017, 45:229-235.
- [43] LIU X, WANG Y, REZAEE E, et al. Tetra-propylsubstituted copper(II)phthalocyanine as dopant-free hole transporting material for planar perovskite solar cells[J].Solar RRL, 2018, 2:1800050.
- [44] YANG G, WANG Y, XU J, et al. A facile molecularly engineered copper(II)phthalocyanine as hole transport material for planar perovskite solar cells with enhanced performance and stability[J]. Nano energy, 2017, 31:322-333.
- [45] YU W, ZHANG J, WANG X, et al. A dispiro-type fluoreneindenofluorene-centered hole transporting material for efficient planar perovskite solar cells[J]. Solar RRL, 2018, 2:1800048.
- [46] WANG X, ZHANG J, YU S, et al. Lowering molecular symmetry to improve the morphological properties of the hole-transport layer for stable perovskite solar cells[J].angewandte chemie international edition, 2018, 57, 12529-12533.
- [47] LUO J, XIA J, YANG H, et al. Toward high-efficiency,hysteresis-less, stable perovskite solar cells:unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid[J]. Energy&environmental science, 2018, 11:2035-2045.
- [48] LIU C, YANG Y, DING Y, et al. High-efficiency and UV-stable planar perovskite solar cells using a lowtemperature, solution-processed electron-transport layer[J].ChemSusChem, 2018, 11:1232-1237.
- [49] YANG D, YANG R, WANG K, et al. High efficiency planartype perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2[J]. Nature communications, 2018,9:3239.
- [50] LIU K, CHEN S, WU J, et al. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells[J]. Energy&environmental science, 2018, 11:3463-3471.
- [51] ZHANG M, DAI S, CHANDRABOSE S, et al. Highperformance fused ring electron acceptor-perovskite hybrid[J]. Journal of the american chemical society, 2018,140:14938-14944.
- [52] WANG K, SHI Y, LI B, et al. Amorphous inorganic electron-selective layers for efficient perovskite solar cells:Feasible strategy towards room-temperature fabrication[J].Advanced materials, 2016, 28:1891-1897.
- [53] WANG K, SHI Y, GAO L. W(Nb)Ox-based efficient flexible perovskite solar cells:From material optimization to working principle[J]. Nano energy, 2017, 31:424-431.
- [54] DONG Q, WANG M, ZHANG Q, et al. Discontinuous SnO2derived blended-interfacial-layer in mesoscopic perovskite solar cells:Minimizing electron transfer resistance and improving stability[J]. Nano Energy, 2017, 38:358-367.
- [55] LIANG F, LIN Y, HE Z, et al. Promising ITO-free perovskite solar cells with WO3-Ag-SnO2 as transparent conductive oxide[J]. Journal of materials chemistry A, 2018:19330-19337.
- [56] YE S, RAO H, ZHANG D, et al. 8-hydroquinolatolithium as a highly effective solution-processable cathode interfacial material in inverted perovskite solar cells with an efficiency over 19%[J]. Solar RRL, 2018, 2:1800084.
- [57] YIN X, ZHOU Y, HAN J, et al. Highly efficient inverted perovskite solar cells based on self-assembled graphene derivatives[J]. Journal of materials chemistry A, 2018, 6:20702-20711.
- [58] ZHOU Y, YIN X, LUO Q, et al. Efficiently improving the stability of inverted perovskite solar cells by employing polyethylenimine-modified carbon nanotubes as electrodes[J]. ACS applied materials&interfaces, 2018, 10:31384-31393.