光照恢复处理对采用不同封装材料的p型PERC双面光伏组件PID的影响INFLUENCE OF ILLUMINATION RECOVERY TREATMENT ON PID OF P-PERC BIFACIAL PV MODULES WITH DIFFERENT ENCAPSULATION MATERIALS
张文馨,孙亚斌,李宇岩
摘要(Abstract):
根据IEC 61215:2021系列标准中的测试序列,在对p型PERC双面光伏组件进行PID测试后,再对其背面进行光照恢复处理,用于观察采用不同封装材料时该类光伏组件的输出功率衰减情况。当以EVA胶膜作为封装材料时,在光伏组件背面观察到2种PID机理,分别是因减反射/钝化层的极化引起的光伏组件输出功率衰减(PID-p)和因电化学腐蚀导致的光伏组件输出功率衰减(PID-c)。测试结果表明:当p型PERC双面光伏组件采用EVA胶膜封装时,随着PID测试时间的延长,PID-c越来越严重;光照恢复处理后,PID-p造成的光伏组件输出功率衰减可以得到大幅恢复,但因PID-c导致的光伏组件输出功率衰减并未得到恢复;采用由高体积电阻率的ENGAGETM PV POE为原料生产的POE胶膜作为封装材料时,p型PERC双面光伏组件在不同测试条件下均始终保持非常低的输出功率衰减。研究结果也可进一步证实不同封装材料对光伏组件长期可靠性的影响并不会因为测试序列的更改而改变。
关键词(KeyWords): p型PERC双面光伏组件;聚烯烃弹性体胶膜;电势诱导衰减;IEC 61215:2021系列标准;长期稳定性
基金项目(Foundation):
作者(Author): 张文馨,孙亚斌,李宇岩
DOI: 10.19911/j.1003-0417.tyn20220309.01
参考文献(References):
- [1] SWANSON R, CUDZINOVIC M, DECEUSTER D,et al. The surface polarization effect in high efficiency silicon solar cell[C]//Proceedings of the 15th International Photovoltaic Science&Engineering Conference, October10, 2005, Shanghai, China.
- [2] NAUMANN V, LAUSCH D, HAHNEL A, et al.Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cells[J]. Solar energy materials&solar cells, 2014, 120:383-389.
- [3] CAROLUS J, TSANAKAS J A, HEIDE A V D, et al.Physics of potential-induced degradation in bifacial p-PERC solar cells[J]. Solar energy materials&solar cells, 2019,200:109950.
- [4] LUO W, HACKE P, TERWILLIGER K, et al. Elucidating potential-induced degradation in bifacial PERC silicon photovoltaic modules[J]. Progress in photovoltaics, 2018,26(10):859-867.
- [5] GREEN M. The passivated emitter and rear cell(PERC):From conception to mass production[J]. Solar energy materials&solar cells, 2015, 143:190-197.
- [6] LIN C W, TSAI Y L, YANG C M, et al. Potential induced degradation mechanism observed at module level[C]//28th European Photovoltaic Solar Energy Conference and Exhibition, September 30-October 04, 2013, Paris, France.
- [7] HACKE P, TERWILLIGER K, GLICK S, et al.Interlaboratory study to determine repeatability of the dampheat test method for potential-induced degradation and polarization in crystalline silicon photovoltaic modules[J].IEEE journal of photovoltaics, 2015, 5(1):94-101.
- [8] LUO W, HACKE P, HSIAN S M, et al. Investigation of the impact of illumination on the polarization-type potentialinduced degradation of crystalline silicon photovoltaic modules[J]. IEEE journal of photovoltaics, 2018, 8(5):2843-2848.
- [9] BERGHOLD J, FRANK O, HOEHNE H, et al. Potential induced degradation of solar cells and panels[C]//Photovoltaic Specialists Conference(PVSC), June 20-25,2010, Honolulu, HI, USA.
- [10] KOCH S, NIESCHALK D, BERGHOLD J, et al. Potential induced degradation effects on crystalline silicon cells with various antireflective coatings[C]//27th European Photovoltaic Solar Energy Conference and Exhibition,September 24-28, 2012, Frankfurt, Germany.
- [11] FONASH S. Solar cell device physics[M]. 2nd ed. MA:Academic Press, 2010.
- [12] SWANSON R M, DECEUSTER D, DESAI V, et al.Preventing harmful polarization of solar cells:12477796[P].2009-06-30.
- [13] RUMMENS F. Photovoltaic modules comprising a back-sheet and electrical insulation layer(s)which are highly permeable to corrosive degradation by-products:2013041191A1[P]. 2012-10-09.
- [14] KRAFT A, LABUSCH L, ENSSLEN T, et al. Investigation of acetic acid corrosion impacton printed solar cell contacts[J]. IEEE journal of photovoltaics, 2015, 5(3):736-743.
- [15] SPORLEDER K, NAUMANN V, BAUER J, et al. Root cause analysis on corrosive potential-induced degradation effects at the rear side of bifacial silicon PERC solar cells[J].Solar energy materials and solar cells, 2019, 201:110062.
- [16] NELSON J. The physics of solar cells[M]. 1st ed. NJ:Imperial College Press, 2003.