受限空间内氢气泄漏扩散行为的数值模拟NUMERICAL SIMULATION OF HYDROGEN LEAKAGE AND DIFFUSION BEHAVIOR IN CONFINED SPACE
时婷婷,杨福明,常雪伦,孙晨,于文涛,鲁仰辉
摘要(Abstract):
氢分子是自然界中最小的分子,很容易通过管道接头、阀门等位置发生泄漏。由于氢气的易燃易爆属性,泄漏后形成的可燃气云一旦遇到火源容易演变成事故。因此,对氢气泄漏扩散行为进行研究有助于掌握氢气事故演化发展规律,对于事故预防具有重要意义。针对一个尺寸为0.47 m×0.33 m×0.20 m的立方体空间建立几何模型,采用自主研发的MPPBuoyantEpplFoam求解器对该模型内的氢气泄漏扩散行为进行了数值模拟,获得了氢气泄漏后的氢气浓度分布、扩散速度分布及流动扩散规律,通过与相关文献中的实验结果进行对比,二者吻合较好,初步验证了该求解器多组分扩散功能的准确性。研究结果表明,在受限空间内,氢气泄漏后表现出如下流动扩散规律:1)氢气从模型顶部竖直向下喷入计算域后,在周围静止空气阻滞作用和浮升力作用下,扩散速度迅速减小,流动的动量控制区变短;2)在氢气注入阶段,计算域氢气浓度分布会在浮力作用下呈现明显的分层效应,上部的氢气浓度高,下部的氢气浓度低;3)氢气停止注入后,在分子扩散作用下,计算域上下部氢气浓度差逐渐变小,并最终达到均匀混合。
关键词(KeyWords): 氢能;安全;受限空间;氢气;泄漏;扩散;数值模拟
基金项目(Foundation): 河北省重点研发计划——天然气掺氢关键技术研发及应用示范(20314601D)
作者(Author): 时婷婷,杨福明,常雪伦,孙晨,于文涛,鲁仰辉
DOI: 10.19911/j.1003-0417.tyn20220306.01
参考文献(References):
- [1] DENISENKO V P,KIRILLOV I A,KOROBTSEV S V,et al. Hydrogen-air explosive envelope behavior in confined space at different leak velocities[EB/OL].[2022-03-01].http://conference.ing.unipi.it/ichs2009/images/stories/papers/194.pdf.
- [2] MANINS P C. Turbulent buoyant convection from a source in a confined region[J]. Journal of fluid mechanics,1979,91(4):765-781.
- [3] D E S T E FA N O M,R O C O U RT X,S O C H E T I,et al. Hydrogen dispersion in a closed environment[J].International journal of hydrogen energy,2019,44(17):9031-9040.
- [4] CARITEAU B,TKATSCHENKO I. Experimental study of the effects of vent geometry on the dispersion of a buoyant gas in a small enclosure[J]. International journal of hydrogen energy,2013,38(19):8030-8038.
- [5] PITTS W M,YANG J C,BLAIS M,et al. Dispersion and burning behavior of hydrogen released in a fullscale residential garage in the presence and absence of conventional automobiles[J]. International journal of hydrogen energy,2012,37(22):17457-17469.
- [6] PITTS W M,YANG J C,PRASAD K,et al. Dispersion and burning behavior of hydrogen released in a fullscale residential garage in the presence and absence of conventional automobiles——supplemental video materials[EB/OL].[2022-03-01]. https://www.nist.gov/el/fire-research-division-73300/dispersion-and-burningbehavior-hydrogen-released-full-scale.
- [7] BLAIS M,JOYCE A. Hydrogen release and combustion measurements in a full scale garage:10-929[R/OL].[2022-03-01]. https://www.nist.gov/publications/hydrogen-releaseand-combustion-measurements-full-scale-garage.
- [8] HAJJI Y,JOUINI B,BOUTERAA M,et al. Numerical study of hydrogen release accidents in a residential garage[J]. International journal of hydrogen energy,2015,40(31):9747-9759.
- [9] J A S A K H, J E M C O V A, T U K O V I C Z, e t a l.O p e n F O A M:A C++l i b r a r y f o r c o m p l e x p h y s i c s simulations[C]//International Workshop on Coupled Methods in Numerical Dynamics,September 19-21,2007,IUC,Dubrovnik,Croatia.[S.l.:s.n.],2007.
- [10] ZHANG H J,ZHU W B,CHEN H. A robust and efficient segregated algorithm for fluid flow:the EPPL method[J].Journal of computational physics,2020,423:109823.
- [11] SCOGGINS J B,LEROY V,BELLAS CHATZIGEORGIS G,et al. Mutation++:MUlticomponent thermodynamic and transport properties for IONized gases in C++[J].SoftwareX,2020,12:100575.
- [12] KEE R J,COLTRIN M E,GLARBORG P.反应流:理论与应用[M].史翊翊,蔡宁生,王雨晴,译.北京:清华大学出版社,2018:63.